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REGULAR INVERSION OF THE DIVERGENCE OPERATOR WITH
DIRICHLET BOUNDARY CONDITIONS ON A POLYGON*

DOUGLAS N. ARNOLD,t L. RIDGWAY SCOTT, AND MICHAEL VOGELIRS§

Abstract. We consider the existence of regular solutions to the boundary value problem div U = f
on a plane I)olygonal domain f0 with the Dirichlet boundary condition U = g on 8fl. We formulate
simultaneou ly necessary and sufficient conditions on f and g in order that a solution U exist in the
Sobolev spa. e Wp + 1 (Q). In addition to the obvious regularity and integral conditions these consist of
at most one compatibility condition at each vertex of the polygon. In the special case of homogeneous
boundary da ta, it is necessary and sufficient that f belong to IV'(Q), have mean value zero, and vanish at
each vertex. (The latter condition only applies if s is large enough that the point values make sense.) We
const ruct a .d ,lution operator which is independent of I and p. As intermediate results we obtain various
new i race th 'orems for Sobolev spaces on polygons.

Key words, divergence, trace, Sobolev space

A VIS(MOS) subject classifications. 35365, 46 35

1. Introduction. The constraint of incompressibility arises in many problems of

physical interest. In its simplest form th s constraint is modelled by the partial differential

equation

divU=O inQ,

where U could 1)e, for example, the velocity ield in the Navier-Stokes equations or the
displacement field in the equations of incompre ;sible elasticity and Q is the spatial domain.
Often in the analysis of such problems the inh ,mogeneous equation

(1.1) divU=f inQ

is introduced and the question of the existence of regular solutions to this equation arises.
If no boundary conditions are imposed, then it is easy to see that solutions to (1.1) may

be found which are as regular as the regidarity of f permits. That is, if f belongs to the

Sobolev space WS(Q) for some s > 0 aid 1 < p < oo then there exists a solution U in
VV8+I1 (9). To show this it suffices to define U = gradu where u E 14'+ 2 (Q) is a solution -

*This research was partially supported by NSF grant )MS-86-01489 ( )NA), NSF grant DMS-86-13352

(1,tS), ONR contract N00014-85-K-0169 (MV), and the Sloan Foundation (MV). Each of the authors was
in res dence and further supported by the Institute for \1athematics and its Applications for part of the
time t his research was being performed.

'l)epartrnent of Mathematics, University of Marylan( . College Park, MD 207,12 and Institute for Math- .
'jiatics and its Applications, University of Minnesota, Minneapolis, MN 55455.

++1Dpartnient of Mathematics, Pennsylvania State University, University Park, PA 16802. "
IDipartnent of Mathematics, University of Maryland, College Park, MiD 20742.
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of Poisson's equation Au J. Note that there exist such regular solutions of Poisson's
equation even on a domain whose boundary is as unied no more regular than Lipschitz,
since we can always extend f to a smoothly bound -d domain and solve a regular boundary
value problem for Poisson's equation (such as the Dirichlet problem) on the larger domain.

The existence of regular solutions to (1.1) withi specified boundary values

(1.2) U=g on)Q

is more subtle. An obvious necessary condition fi, the existence of such a solution is that

(1.3) jffjdivU =0 I-.v=f0 g-v. I

If Q? is a smoothly bounded planar domain, f e 11 , g EVi/P( - Q) for s > 0 with
s - 1/p nonintegral, and (1.3) holds, then a sinj le construction of a solution U of (1.1),
(1.2) in V1+1(Q) is possible. For example, consid, r the case g = 0 and suppose Q is simply
connected. First let i C 11, + 2(Q) be a solution t., Poisson's equation as above. Then the

normal d, '.ivative Ou/Ov and the tangential derivative au/au are in lI ,+ -t/P(8Q) with
fort Ou/c'= 0. We can thus find w E W+ 2(Q) such that

Ow, v = 0u/0a, Ow/0Do = -Ou/Ov ,n x2,

or, equivalently,

curl w - grad u on Of.

(By curl u, we mean the vectorfield (Ow/Dy, -O/Ox)). Setting U = grad u + curl w gives
the desired solution.

If OQ is not sufficiently smooth, then this argument fails and the existence of w is far
from obvious. In this paper we consider the case of polygonal Q with sides denoted by
F,,. Returning to the general case, we show that if f belongs to TV;(f), gIr. belongs

to [" 1 +i/p(r,) for each n, and f and g s.tisfy (1.3) and some further necessary

coiupatilbility conditions, then (1.1) admits a TV'+' solution U satisfying the boundary
condition (1.2). SomeN liat surprisingly, the con )atibility conditions required for s = 2,
ol, ,oi(litijol per vert c in addition to (1.3), ar sufficient for all higher s. These results
have already been appl ed iii [2], [6], and [8].

2. Preliminaries. We will introduce a variu tv of function spaces allied to the Sobolev
spaces. F(r the coiiveni nce of tle reader we list here our notatioi for each and the equation
iiumimber neatest the defiut in.

Uf) (2.1); ,(Q) (2.1); T'V ( ) (2.1);

117'(Ql) (3. 1) X;71 ( 1X .".,(oQ') (.)

A

z ( ) 63)..); 1"

P P



Throughout the letter C is used to denote a gcneric constant, not necessarily tl,e same

from one occurence to the next. For Q C R" a donain with Lipschitz boundary (as d,.fined,

for example, in [3, Definition 1.2.1.1]), and f E C'(Q) we define the usual Sobolev norms

for 1 <p < oo and s > 0:

P 0,
IIfIIP(Q)'

(2.1) P Q Ifif + [j- f'( Y)1'dx dy 0<S<1,- IlfllAP,.'O L . Q S. Ix _ YI," , dxd] < s< 1

J-[f],p~ n 1 < 00 o .

(Here [s] denotes the greatest integer not exceeding s.) The spaces WI(f) and lW,(t)

are defined to be the closures of C:(O) and Cf(Q), respectively, relative to these norms.

There exists a bounded linear extension operator from W'(Q) into 1'1(R) (even if th

boundary is only Lipschitz). Cf. [3, Theorem 1.4.3.1]. For s > 1/p the functions in TV,'(Q)

have well-d fined traces on Of. If s > 1 then V'(Q) fl W '() = { E WV,(Q) I , -

0 oi, DQ }. We denote by 1V(Q) the sul space of 11"'(P) consisting of elements whose

integral is zero. For details and more information regarding Sobolev spaces, we refer the

rea(er to [1], [3], [71, and, for the case p = 2, to [5].

We shall also require the Sobolev normis for functions defined on Lipschitz curves in

W2 , in particular for an open subset, F, of the 6oundary of a polygon. For a Lipschitz

curve, the norms II-11 pr nlia\' be defined for 0 < s < 1, 1 < p < oc, via charts. Moreover,

for I/p < s < 1, the trace operator maps 11"(Q2) boundedly onto I; -'/P(fQ). See [3.

The ,rem,, 1.5.1.2]. (The nornis II ll,,pr, s > 1, are not well-defined unless F is more

rvgul.Lr.)

V'e recall some properties of these spaces when the domain of definition is a broken

line stegnient.. (Cf. [4] or [3, Lemma 1.5.1.S].) Suppose F1 and F2 are line segments in R2

interecting at a common endpoint, z, and let f be a function on F = Fi u r 2. Then for

1 < p < oc and 0 < s < 1/p, fE i v(F) if and only if

(2.2) flr, E 11"F 1 ), fir2  E 11"(1 2 ).

More,ver, the norm

(2.3) II. ,,,,r', + II fli,.,.r2

is e(luivahelt to the V( F) norm. For 1/p < s < 1, f E 11( (F) if and oily if (2.2) holds and

f is continuous at z. (Note that (2.2) implies the continuity of f evrywhere else in view

of the So)0,,ev imbedding theorem). In this ca,.e too we have equivalence of norms. The

case s = 1/p is more involved. Let o"1 denote t .e unit direction along F pointing toward

3



z, and let 02 denote the unit direction along 17 p tg away from z. Then f E !U' /P(F)

if and only if (2.2) holds and

IIf)= t-I jf(Z - taUI ( + tU2 V (I t < 0

where f is a p ositive number not exceeding the le: 2 ths of Fi or £2. In this case

(2.4) (11fI/,,l + 11flP/P.,, 2 + N2(f)) /p

deffies a norm equivalent to f1 fl1l/P.p,r.
If F! and F2 are collinear, so F is a line segment, one can easily extend these results to

determine when f belongs to 1V"(F) for s > 1. Namely, if s - 1/p is not an integer, then

f C 11"(F) if and only if (2.2) holds and the tangential derivatives f(k) are continuous at

z for 0 < k < s - 1/p. If this case, (2.3) is an equivalent norm on IV;(). If s - 1/p is anPf

integer, it is required in addition that I1 (f( '-4 / P)) < oc and then [11fl1, ,r , + HAS f p,r2 +

I!(f( - 1/,,))] /p is an equivalent herin on 1V'(F).

\;e close this section Nvith two lemmas concerning the space 11,,1 on a sector. Let

S, {(rosO. rsin) 10 < r < 1, O< 9< a}, F = {(rcosacrsinn) O<r < 1, and

Fr { (r,0) 10 < r < 1 . Then F" := F" U Ff U (0,0) is the linear part of the boundary
of S,. By -Tu we denote the trace of the function u on F '.

LEMM..\ 2.1. Let & E (0, 2v). Then the trace ('perator maps l1 /P(S,0 ) continuously

into iV]lp, F").

Pro!. For p > 2 this lemma follows iinnediately from the trace theorem quoted earlier
([3. Theoi in 1.5.1.2]) since then = 2 /p < 1. For 1 < p < 2 we first show that Y rnaps1V(S") continuously into 1V-I/(F'), 2/,', < t < 1 + 1/p. Indeed, if u E 1"(S.,),
thjeji 7u , C W-1/P(F?'), and since I > 2/p, " u is also continuoIs at the origin. As

- i/p < 1, this implies that -1u E Itll '(F'). Furthermore, ve know that -t maps

V,(S,,) c'-ntinuously into " /(F). 'he coiiclusion of the leminna now follows hy

ilitc'rpolatiom.1 [I

' The fractional order spaces 111(S-,) niay also l, definE", by real interpolation )etwcel tIwo consecutive

intrger ordlrs. lhis is the approach used in [I. Ch 7], wh re the sliecific .'nterpo ation process is defined.
I hi equivalence with the definition given here is sh own in [1, Theorein 7.48] Sin,ilarly the spaces I'ti 1)
for an interval I may be defined by real interpolation betwe n integr orders. The saine holds for the spa es
W',(:l "' ) for < s < 1, because these are delined hy pulli g back i ie spaces It" I) via Lipschitz ca, is.

Sice 1 < I < 2 it is possible to interpolate between IVI' (S.,, and 11" (,, ) and since 0 < I -1/p < -l/p < I

it is possilble to interpolate between W - /r(['') and II I I ) (- Choosing tile iiterpolatioll index

il rolpijah,ly we get that -' nlaps Wc/(S' , olit il)lci , sly ilto It' I / P .

4



Remarks. ( 1) If a varies init compact suibint erval of (0, 27,), then the distance between

p)oint" .r- E I"? and x, G is equivalent to rthe sumi of the distances of x, and x, to(

the( origin1, uiii1foriily III (I.C'eqItIcttlY, the eqtiivaleilice of the norm in (2.4) and tlu'

I Vj /'17 " ) 1o0riil is uni1formiii II a. It is tlhen easy to see that there is a single constant which

bounds thle norin of the trace op)erator between the spaces TV " (S.) and TV; (r,)-

(2) Usin , a partition of uniity. we can easily extend Lem-ma 2.1 to showv that trace operator

niaps TVIP(Q! continuously into I I /P(cQ) for any p~olygonal domain Qh.

The niext lemma relates the dlecay of the trace of a U,2pfunction near the vertex to
the decii of the function itself.

LEMI -A 2.2. Let a E (0, 27,). Then thore exists a constant C such that

(25 j 1(r-), " -' dxr < C (hulL f'PIP's + JJ (X 012 dx dy}

andc

(.)II'd'. !i)I' dx dy < C (+11 1  ± U( .,- 0)1p dx
(2.)XJ,~ + y 2  

\2 S j X
S.

for all it E W2P(

Proof. Sup) 05e 9 lies lbetweeri a/2 and a. Then 9 is bounded away fromn 0 and 2-,.
and~ so we mnay find a constant C dlepending oni a but not 9 for wvhich

7*1I ii( rcosO9.r sin 9) - u, r, 0)jI~dr < C Iil

Moreover by Lemmna 2.1, there is a single cons aiit C such that

IIIIIPpV Chi 1 /, p e < CII, 1 2/P p.

holds for all such 9. Thus

/ . af l( I-,0)1 ) Idr < Ci (J ' 1' rcosO,r sinO)I'dy + 1111

Int egration over 9 inu (oa/2, (i ) givyes (2.5).

'1,thor of the t wo initegrals enltering in (2.5) an( (2.6) may be infinite. In that case the inequalities
impl~)y that they both are inihiite.

5



To i)rove (2.6) it suffices to show that

(2'7) III(x, 1"y c' _ I ," + /o' <C i(x, lx

(2f f xr + Y~ kL'Pp. + 10 X )
D

w],ere D is the unit disc, since we can always extend a function in V1 (S) to one in

W1'J(D). Considering the trace of u on r' and applying Lemma 2.1, we see that

(2.8) Ia(-X')j' dX < C (J1 l1, d ,r+ Ilull/PD)

Let 0 e [7-/2, 3-r/2]. Applying the lemma again, we get

J r-I k(d cos9, rsin 0 ) - u(",O)j P d,' < Cllrrl' < CllniZl
C)I 1 'P , F " 2 /p ,,,D ,

where w( may choose C independent of 0. Consequently,

(2.9) o r- l (,cos 0,,' sinO)lI dr <_ C IIl ,1 D + , 1-it(r, 0)IP dr)

Similarly for 9 E [0, 7r/2] U [37r/2, 27r], we may consider the trace of u on the boundary of
the sector formed by the negative x-axis and the ray emanating from the origin with angle
0 and use (2.8) to conclude (2.9). Integration of (2.9) with respect to 0 E (0,27r) gives
(2.7). [1

3. The main theorem. Honogeneous Boundary Conditions. Let Q denote
a (bounded and simply-connectel) polygonal domain in the plane. Denote by zj, j =
1,2,. . .N, the vertices of 2 listed in order as 0£? is traversed counterclockwise, and by
17) the opeu line segment connecting zj-l to zj (we interpret the subscripts on z and1 r
inodulo N). We explicitly assume that the magnitude of the ngle formed by Fr and r j+j
at zj lies st rictly betwe,,n 0 and 2-r, i.e., we 'xclude domains x ith slits. We also denote bv
v the outw;,rd-pointing unit vector normal to Q which is defi 'd on 0£? \ {z, ... ,ZN} and

by Vj its constant valn, on F,. Similarly a and aj refer to the counterclockwise tangent
vec to:.

Si ppose that U E W,' 44+(£2) satisfies (1.1) and vanishes on O£. Then, of course,
. f : . In addition oU/0.j = 0 on F, and OU/aj+l = 0 on Fj+I. For s > 2/p
the Sol)olev imbedding theorem implies that both the directional derivatives OU/u 1j and
O9U/Do'+I are contillti( us on Q2. so they both vanish at zj. Since the vectors 0"1 and uj+l
ale linly" indepeidem it follows that f =:divU vanishes a~t zj. Define

I , ).00 < s < 2/p,
(3.1) Ii ,f2) {f C .hV()Ij If(z.)lPd ,j .-- ,( ) I z)1 d.: < o0 ,j0 1 ..... N' s. = 2/,,

{C.f E 11"(02) I .f(zj) 0, j 1,... ,N }, s > 2/p.

6



This space is nornd 1by the restriction of the W; inori except if s 2/1, in which case

Nre take the Ijnr to bc

12 = ll ,. L I - zj
j=l

We have just seen that for s > 0, s 5 2/p,
1 2)

(3.2) div([W, +' (Q) n I ' (Q)] c 1V(Q).

This is also true if s = 2/p, as we now demonstrate. For any p E 7 /p+' (Q) n 1111(Q) thetangential derivative 0 /0u vanishes on every edge. In light of (2.6) it follows that

ief (z)/OrjIP dz + 1P)d/+ : < OI -' 1zl I -Z,1

Since uj ann uj+l are linearly independent,

J igradO(z)IP dz. o0.!!-I Iz -zj 2

The inclusion (3.2) follows by application of this result coinponentwise to U.
The next theorem is our main result for homogeneous boundary conditions. It shows

that in fact equality holds in (3.2) and that the divergence operator admits a bounded

right inverse which does not depend on s or p.

ThEOREM 3.1. Let 1 < p < oc, s > 0. If p € 2 :uppose that s - 1ip V Z. Then there
exists a bounded linear map

WIV1 (Q) , [flYS+i(Q) W' (2)] 2

such that div £(f) = f for all f E 'IVp(Q). The ope ator £ may be chosen independently

of s and p.:

Remark. We conjecture that the hypothesis that s - 1/p Z is unnecessary for all p,
not just ) = 2. However this hypothesis is necessary for certain trace results we use in our

proof. See the remark to Theorem 4.1.

Several ingredients of the proof of this theorem will be developed in the next three

sections. These ingredients assembled, the proof of Theorem 3.1 becomes very short. It
is given in the last section of this paper. The analogue of Theorem 3.1 for the case of

inhonmogencous boundary conditions is also true. This result is stated as Theorem 7.1.

a More precisely, there is a linear operator

Swh tHat for each s and J), C ,naps 11'7(9) ,OinAd Ily into [IV+i (Q) n 1j'1 (Q)] 2 .

7
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41. A resuilt concerning t races on a line. lII thle caIse of aI smnoth bi ouiida ry. thle

loll~ otct10 f it solltion~ 4 1 )vaIlilslililg on IILO2 115 sket ched~ ini Sctio1 1 \Iiis baisct ~1oi
tlie existenlce a) ; funct ion i i, whose curl coincidles wxith thlet Iie gradient (f aiiotlher

ft ict ioul 1/ o l thle IouIar.III ext('111" tiou ti ca s iit t li rs of I polygon. we

iiceo to ) iio\\w~l vee tofedsim i- a 1 al ;I )oly~o~llij ;1i I is the tralces Of curllls

o r gradliits-. Thle in rest ilts of sect ion 6, Tlie wen 6.2 and Corollary 6.3, provide thle

ai nswer. Iii derivinig thleii we need,( a co llee t iiii of other trace Iteorems, startingr Nvi thI

I jose of I a's Sectiton r-e-tiltrt hug traces of ai fittict ion of two variables on a line. Let S(

- ~ dn ttlie, SelIwNart z sj) ice. i.e.. thle space-( of C" functions of one var;ia-ble, all of ,%lh(,e

leriva 1ve5 lk rese fai r er I haiil a n polynmial1 at Infinity, and let S'( R) deniote its dlual.

Let _D S,( R ) (leliotc the sub11set of H7- o S'( R ) consisting of vectors having at mnost a

fuilite 111110! )er- of Io- ero lt ries. Given subshpaces T,' C S'(R ), 0 < < m. we view the
Caresin p~I 11t 1 V naturally as a subspace of (D S'(R ) by setting all entries

\vI tl I ndex greater thlt it? to zerlo.

Tm.,,onr;\tm 4.1. Let .; d 1 ) denlote real numbers such that I < p <0, > I/p. If
J) 7 2 isti&that .i - 1/p) 1 Z. Then tile trace mapq

Ilci) I1~j botid 11(1 111 onlto IU' K.* - .O .. Is aI

-I 'P( R) provided <s-1/p. Morover. there
milp]

eS(R) -* ( R 2 \ (R x {0}))

>u IIi thalt, if f z- J= I 1 Vp 1-1/, (H k h III <imK. thenl

fI H' <) C, 11 -1 I/p.p,R

* 1=0

,j I -: 0. . ii

Ic';.~ (1hle~ceo1'hi e aoalthle cas;.i-w 1/1, inerl itp 2,z since Iii this case(.

it' tlote( opetator I., aI 13e1(\, Patc wh'iiel does Ilint call ,ide withl anlySo e

-. , Ct 1 Chlptei I'.

Jr £1 ~fitun tI~ ienti thatt. iftt' L 0~f~ ,,.. 0...xii]

lii1, 7, k,

W.t



9- a> a f'iletioill,~ .;-- I/)k . 1ro\i(I'l , < A < . - 1/p. B" the Sobolev imbedding

(-U .1) ,0) .I " l Ii

(in1 th, pointwise sense) provided m < k and j - < . 2 -- "/1.

Pioof. The asserted properties of th,' trace opera to ,, ar, standard. cf. [3] and [7].

Since we require a fi.ed extension open';tor ,. indepeindent of .,. we include a detailed

derivation of this part of the result. 0ui constrict ioi extendls that given in [7]. Let S )e

a function in S(R) whichi satisfies

JR Slt) (I = 1. j ir, t (It,! = o. 1.= ..

Such a function exists, as is easily seen III- t: e Fourier transform. .F. These conditi,,nus

translate to choosing (.S)(0) = 1 ano (-FS)' )(0) 0 for I = 1.2 ..... Since J is

an isoiiorphism on S(R), we can choos, S E S(R) with these pr,)p'rties as follows: let

C'(R) lhe any function that is ideliti -ally 0nie in a i(ighil)orlo( I of the origin, and et
S = T'1 \. Now we define

v (X, Y) X , .(.f0, .fI .... ) .,y

(4.2) C11- Z ) J S(t)f j(x + t) dt. E R 2 \ (R x 0" : X(!J)E !-R
j=Uj

where again. \ E Co0 (R) is any f lnction that is i(leiiticallV ,ie iII a iieighIl),)rhood of

the origin. Note that only a finite inmiber of terins iII ( 1.2) an ni-zr ) 1 ecause we ;,re

alssuinig that (f0, .... ) E __ 8' (R). It is easy to ve: if% t hat ,' has the asserted traces.

The boimihedness of $? from H-[='0 1U"- - / A) to 11',(R 2 ) f, diows from the following

re-Ilt. E

* LwImNA 4.2. Let j he a i oni.gativI itoi'r. S C SF. F C',- R , f C ('7;( .

'T 'i 1 "a. ; v I -;1 , ' w ith I < p ;,:,(1 , j I ], with . - , I Z i p € 2 . there

Tin,, , .r;, t ( (bi wle,1 . ,,1 \ .'. . ;11I , 1,1t 1Wt ,)11

1 1 o1 .-v ' .u t. - I % %.

%, I,,

-p f



For any positive integers k > j, there are coefficients co,..., cj and a function Ski E S(R)

such that

k_, ( f S(t)f k-t)(x + yt)tk- (It

yk ) C Y JR
1=0

3 c tt t
1t f(k-i)(x + yt) dt

j= jc (~~ [S(t)tk - t]] f(k-j)(x + yt) dt

IR Skj(t)f(k-J)(X + yt) dt

Similarly, :'or positive integers k < j, there exists a function Ski E SR) such that

O w f.r

*y-r(Xy) = IS- R Skj(t)f(x + yt) dt.

That is, for any integers k and J,

, (k IV ) in axj - k ,o } S .j ( t ) f ( m x { k - j ,° I ) ( X + t ) t .

JR y)~

For differentiation with respect to x, we get

O k  (, y) = YmaxSjjk,) f S j(t)f( nax{k-j'°})( + yt) dt

with some function Skj E S(R) . Combining these formulas, w( have for any multi-index

a that

D'v(x,y) = y,,ax (j-IIO} j S 0 (t)f(max{I -J'O)(x + y) dt

where S, E S(R). Leibniz' rule then gives

D' Lt",(x, y) = D' cz ,-X(y)D" w(x, y)

(4.3) I

- .3)X = (y) JR s3(t).f(,.ax{lH3o))(x + yt) dt,

for some x. E Co'J(R).

10



Now for S E S(R), f C C (R), and any real y, Young's inequality gives

(4.4) S(t)f(. r + yt) (It (h < ( S(t) I dtj fx) Idx.

In vi,,w of (4.3) and (4.4) the case of integer s reduces to proving that if S E S(R).

f C C(' (R), then

p p p

4.3) I ] S(t)f'(- yt) (t dx dy < CsIllf_1,p1,,R.

To show this, set

g(x, y) = j S(t)f'(x + yt) dt fR(-1/y)S'(t)f(.r + yt) dt

-R (1/ly)S'(t) [f (x) - f (x + yt)] dt = [RtS'(t) f~)-f +yt) dt.

From H6lder's inequality, we find

Ig(x-)lP < Cs j tS'(t)l If(.) - f(x + yt)l" dt.

Iulini's Theorem thus yields

0, Y) I " dx dy Cs[f[ ItS'( t)l1 (x ) - f(x + yt)P dtdxdy
J F?2  JJJR3 IytI'

CSJJ IS,()I If Wf( x dt dxdz

, If( ) - f x + z)IP drdz

JJ AR
2  IZIP xd

hlch is the desired estimate (4.3). This establishes the theorem for integer s. Interpolation

between consecutive integers then gives the theorem for all real , > j + 1.

To coml)ete the proof, we now consider the case j + ! /p <., < j + 1. In view of , 4.3)
and (4.4) , it suffices to show that for Ia = j we have

0ISn.ID',,(x,y) - D",'(i, lp (.rdydid
" J 2 R 2 I(../) - (., ))I.+( ,J) d d

_ C'f1,-J-/P,,,,R.

Because of (4.3) this reduces to showing th,;t for S E S(R), f ; CO(R), and g defined by

g(x,y) = J $(t)f(x + yt)dt

tl



wt' have

(4.0) IS'I.,p,R2 C.S11fIJsI1p,p,R

providled that 1/. < s < 1. To showv this, we estimate:

1g Y) - g(i, 0) 1 J I S(t)[f (x + yt) - f (; + gt)] dt

< CS JR JS(t)I If(x ± yt) - f(i + pt)jP dt.

Thus

I9Ip,p,R2 < CS111 ISMtI IfAx + YtO - fi + Op T) dt da dydic.
S IVA 5 1( X - j)2 ± (y - P)2 I1+sp

A simple change of variables yields

JfJR'S(t0j If (X+ YO)-Ai + t)I dtdxd.-

3 1 ( X- j) 2 + (y - P)2 Ii+sp/2

fIf f(x + yt) f fP + Pt)I" Or - - yt) - Pr + !10I8P d xJ
JJ ISMtI I(X + yt) -(j + Pt)Isp I(X - )2 + ( )2 Il+s'p/2  dd

f/ f( ) - f?) IS 0)I I -77 ____ dtdcld d.

JJR3 1k - 7718p l[( - yt) - (17 - pt)]2 + (y - )2  i+sp/7

Thus to verify (4.6) it is sufficient to show that

fI jS(t) Idt dy dy CS aER.
IJIR3 I[a - (y - p)t]2 + (y - )2 II+sp/2 - IatsP'

A simple computation gives

H -ISt) (i 2+S /2  j.,(t)j(1 + t2 )1+.1/2 (it = 2 + b2 11+s/ 2

JR 1((t bt)2 -.- i)211+sp/2 la +(2 b211+81/ R l
JW(jl1isc

[(a - bt )2 + b 2 ](1 + t 2 ) > (a 2 + b 2 )/2.

TIhcref )i(

I/ IS(t) I it ly (dPyc S
11R 1[a - (y - p)t]2 + (y - p)2I1+sp/ 2  1 1 R2 [a2 + (y - 21./ ap

TI is estab.:shies the lenmma. and tlius the theoren under the assumption that fj E COO(R)
Tlw thlcor n now follows f r all .' by a density rgument. f

Remark. For (fj) E ED S'( A),
ak.F,(f.,) £((k)) k=,.

12



5. Tr" aces on intersecting half-fines. Theorem 4.1 concerns the traces of a 11"
function on a, line. Using at simple argument involving a partition of unity and local
coordinates it is easy to extend it to cover trace onl smooth curves. Since we are interested
in polygons, however, we will need a result al, dogous to Theorem 4.1 for traces onl two
intersecting line seginents. To state this result, , e require some notation. By R+ w~e denote
the set of positive real numbers. Let

IP'f = jo t 1 If(t)Il' dt.

For 7n it nonnegative integer and s > in + 1/p define X'to be the space of pairs of

(On + 1)-tuples

m m
(5.1) ((f);n=0 ' (g.);=o) E 1jW';--/P(R ) x fJITV--l/P(R+)

satisfying

(5.2) fJk)(0 ) =-9 g'(0), 0O<J, kI n, J+A-< s- 21p,
(5.3) IP(f(k) ( gj) K a jk m k=s

Note that (5.3) only applies if s - 2/p is integral. The space X' is a Banach space with
the norm I1((f), (gj))I11x- given by

± II~I~il/~P~R+) "'

~~~~(IIfiij,,R I-j-1/p,p,R +) + z '(f - g11p/)) )
ifr s - 2 / iso an integer. n

(5.I~--1pjR III1'j -l7W.,R /9k( ) _

j=0 Olj~k13



zraps UV,,(R 2 ) boundcdly onto X' and admits a bounded right inverse

'"x'") w- ;(R2)

TL,' opera or is independent of s and p.

Proof. Our proof is similar to that of [3, Theorem 1.5.2.4]. Fi:st of all, we show that
th, operator defined in (5.4) maps 1V (R2 ) into X'. Let u E W'(R2), and set

fi 1(') 9j a(0, 0f= fl..-(.,)I, gj -(0,.

By the Sobolev imbedding theorem Ok+Ju/&xkayj is continuous oi R2 for k +j < s - 2/p,
so (3.2) holds. If s = m +2/p and k +j = m, then we apply Lemm.t 2.1 to O'mu/OxkOyj to
infer (5.3). Now we define, in several steps, the operator E:'. Let , denote the extension
operator in Theorem 4.1. Let 7"' denote the vector of rn + 1 rest-ictions

X( o = ( 0 ,D ) ... '0y0)

Let Ey and R'm denote the corresponding oper ttors with the x and y variables reversed,
e.g.,

R" Ou Ou(0
/ 'Ox k T ( )

First extend each fj and gj as fui ctions in W'-j-1/P(R) with an extension that is indepen-
dent of s and p. (Cf. [9, Chapter 17] or [10, Chapter 6].) Explicitl-' we ti ke the extension
of f3 given by

f,() = jA(s)fj(-.x)ds, X < 0,

and similarly for gj. Here A is chosen to be bounded, smooth for t > 0, rapidly decreasing
at infinity, and satisfying

(5.5) (t)kA(t) dt = 1, k = 0, 1,2 ....

For example, we can take A(t) = R(t 1 2 ) where R E S(R) is an odd function that satisfies

J R(t)t 2 k+l dt = (-1)k, k = 0, 1,2,.

III particular, we can take FR( ) = i (sinh ) ( ) where X is any even function in Ceg(R)
that is i(entically one in a neighborhood of the origin and T is the Fourier transform.

14



Let f (resp. g) denote the vector of extensions of th' bounday data (f ) on the x-axis

(resp. (j on) on lhe y-axis). Define

v = (f - R7' Tyg) + ,g.

Note that Rt' If because R,. is the lentity operator. Also

"N, y ,Z (f -R , fyg) + g.

Defin, Tit R, g).

If T< k and k+j < s - 2/p, then It () = 0 since (4.1) implies

0 3 +k k f R

"IT" ¢ , )(0 ,0 ) = 0 .

If k < mzand k+j < - 2 /p then

h(k)(0) = g(k)(()) . : (0, ( I g )(0) --.t ) 0)

which is zero in view of (5.2). Also, if k . - j - 2/i), then

I(.~k)) I t 1 g(k)(,) - Ojlk (0,t)P 'It

_< 2 t-l g(k)(t) Otjk(tO) d +2] t-1  i Oj+k ,

taX utt, ) - OX)(!k 0 t

* 2P(f j) - g ) Cjj p
f gi + Ox))Dyk '1/p,p,I(k) 11, p

* 2__ JP(f ,) - g )) + C S),,vIR2

<C ((f,).'=o,(gj)"=O) 11.vX < cc ,

where we have iised Lemina 2.1 in the third I equality. Thus, the function It, which agr( s

with hj on R+ and vanishes for y < 0 lelon, to Ii "--Ip(R) and satisfies

0--:i 1jj--- ,vp,R :S C11] (f ,),% , g ) ,=o) p.\"

The function zi = F_( ho,. .. ,,) satisfies

( )= 7(Y), 0 < y <

ox' O ( , - < y <0,

for j .0... ,n. Finally we set S", ((.fj), (gj)) = u with (see (5.5))

L(X, Y) = V( r, y) + w(., Y) - j0 A(s)w(x, -. ,y) ds, (x. y) E R2

0"iu 0O'v
Note that the last, ten, insures that -( , 0) = -- (.r. 0) = f.(.r) for j = 0, . ,.

15
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6. Extension to general domains. Traces of curls and gradients. We now
cxt,'nd Tliece;i 5.1 froim the case of a single (orner to a polygonal domain. For simplicity
of notation, an. I since this is all we need to piove our main theorem, we consider only the
cases n = 0 aid 7n = 1. We use the notatio I of section 3 for a polygonal domain. If f
and Y are functions defined on Fr and r,+, r,.spectively, we set

I,(f,) j t-' f(z. - tcr,) - g(zn + tcr. )dt

wlire Ii n 1 - Zj- 1.

For s > 1/p we define X' (DQ) to be the space of N-tuple

N

(6.1) (6)N,, I 17 IV i/p(P n

satisfying

I(4.,,,+I) < ), if s = 2/p
(6.2)n(Zn) =n+i(z,), if s > 2/p,

for n = 1,... N. The space Xsv(DQ,) is a Banach space with the norm II N
given iy (.41 + -42 )1/P where

N

n-i
0,ostherife.

For 1 1/ + wedefin X,(Q) to be the space of N-tuples of pairs

i N

•n1l

, satisfying

a ,t n c ' + I

16



+L2-l .11) + + 1 +)(Z).if s > 1 + 2/

(9 oil i~ 0 1-, '0. ()2 Pit ~ + ~ I~ 1 01

JU, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i Un -i-t 2r +, -tIO2 C/pUi+1.4Vl+ *U
a,, 0,11 + -v 0,,4~)( z,,) ( 001+1 0,< 011+ + &l1v 1 1 0,)z,)

if s = 2 + 2 /1),

for it 1.N. The sp~ace .X', 1Q)is a Baxiacli space with1 the iiorin

givenl by 1BI + fl 2 ) 1 P where

N

and

Zn=1 R( LLu, +j "',,v,,. Crn--o,1 + &'t+ 1'vn+1) s- 1 + 2/p.

B2 Z~=1 I1(e)26 lo, , Ur0,,+ + 2IL1 v,, , Ur+,

+ + '1 1,+1 , Ur), z 2 /p

0, otherwise.

Tii L:op EM? 6. 1. Lot ,; and p dc-note r-ea.' numbers such that 1 < p < x., s > I/p If

1) $ 2 assunic that .s - 1/p Z. Then the tnre map

iwiS11" (Q ) 1)0 iilid'C)' on to - (, ) ;II(l adm~its a boundled ng ght MinvErse

~r p

I'lli a(Wol l s > 1 + 1/1 thl'I thew trc Ut( iWI)

/ V
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111,1'.1p 11,(Q2) bolindedIN on~to)*,(~) and ;OIziur., a hoizl(ed 1ng11 lmriVerse1

L 7r SJ 11

B, )tt1 t ( r Idt( sL,7,,; I i (I ;I n d l I ilI ,)E v I(I t nId ., alie 1 ).

Prowl Wet cal c(Ut (o 2 N vith I a ilitc cu llec t iol of openi Sets suchl thlat cach set ini this

((I~l',t llla bi e iilal)1)d (Iy alln iliverile ;IiHiie. 1,lap oiito the Square'~ (-1, 1) x ( -1, 1) ill

Such a way that the juitec t in)l o)f thle set withi Q mapped olto mi)e of the following sets:

(-,1I) x ( 0,1) (0, 1) x 0. 1). or I(-1.1) x -1. 1 \[0, 11 x [0, 1]. Inl lightof Theorem 3.1

amIi the t'xteiish( n t lien)rn ili fm-i Sololev sl nmnes, a linple p)artitioni of uniity argument gives

lie preent result. ]

\'Ve ran no0w characterize thle traces of curls oi IT- functions. Let Z'DQ ) ( .s > 1 + 11p)
p

(heil t (' thle sumbspace of A -tulpies of vec tor- valuied fuinctionls

G.7 j ', , 0.

(6.8) 1~P,4),+) < cc, if s =1 + 2/p),

(0.9) 1',i = 4) n +I( Z n), if i > 1 + 2 /p,

(6 10 1 1 ( 4)11 -vil D(p4 ±r~ l -V ) < ifs = 2 + 2 1p ,
(0.10 Don+,

G. I 1 04" , +11 011,+1 ''vt

o~a.1 1)r (z1). if s >2 + -9/p.

'Thi., sP;nnn' V nnnuIIed ill the usual way.

I' r~mIN! 0.2. Let ; ;ill(l 1) denote reall niumbers Such that 1 < j) < 0, 8 > 1+ 1/1). rf

~ 1) j n~~u~ 2ia 1/]) 1. Tlhen the operator

11 n- (curl nil-,),.

ll~d) 1 ' j )l~() ~( 0 ~ ) df(I adi.ts a boulndied rilht inverse Ecr ilicli is

11J(Itjt ld l t (d S an 1 ).

Plroof Fliat the opera ti ill (6.12) niaps it muo Z-~(oQ ) follows from the continuity and
t;1e p~i p, ti es of curl it m id o02u,/o,,o,, + . Gi :eii (4,,,) we ileffine £ul(Wi as follows.

hor c oQ D(,ilt () jivu r

18 "



(the integral taken counterclockwise along F) and set

P it,,:: 0 11r,,. - On,== -4), " mr,. n = 1 . . N

It is easy to Vl fy that, (4, ) C Z' ( DQ) iniplies (E,,,/',) C X.,(O ). Vc set

4Cur, (4)) = ((0,,',)) U

W'e conclude this section by showing that the trace of the gradient of a V"(Q) function

i> also in Z'(DQ ) as long as the function sati ties some necessary compatibility conditions.

Namely we deffine the subspace 11"(Q) of lV() for s 2 2 as follows. For s < 2 + 2 /p.

(G.13) it(Q) { u C TV,(Q) j Au = 0

for q > 2 +-2 /p,

IV ( ) { u C T";,() i Au = 0, Au(zj) 0, j 1,..., N }
anI(d for s 2 + 2 /p,

ItA 1(Q) 0/ IAu (Z)l d,< ,IIN(Q ) u C, , I Au 0= 2 dI: - z < 00, j = 1,.. .,N .

The Bariach norm on 1 1"(Q) is the restriction of the 1I, normn exctjpt if , = 2 + 2/p, in

which case N

l (+ z
zj .1j=

CO (OI(IiARY 6.3. If. > 2, then the operator

~U - ( grad 11 1t r.

pmaps IV,(-) bounccdlv into Z,( Q).

Prooft. It suffices to verify conditions 6.7)-(G.11) for 4 = grad xi, u " ( Q). The first
'A

c,,idition holds since t Au 0 for u E 117"(M:

(gral () j v,, = A,, = 0.

19fr5
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Condition (6.9) follows from the continuity of grad u on Q) if s > 1 + 2/p, and similarly

(6.8) follows from the inclusion of (gradu)Ir in 1 /P(r) if s =1 + 2/p. To verify (6.10)
and (6.11), we note that (gradu) -v = On/v, so

D(gr'ad • ,+ 1) + O(grad i t ) 02 U 021U
-57 - (.+i .v,)Au.(O0"n  0 9,+ 1 D0",,IN 1,+ 1 U0"+ 1 O v,

Ifs > 2 + 2/p, then Au(zj) = 0 by definition, so (6.11) holds. If s = 2 + 2/p, then

1 (0( ud u. V,, 1+) I0(gra(d i v.,
Do,, ", 1

02-  02 a
= t1 ]0of, -v,,+, (z,, -to,)- ,),+oD ,(:z, + to +1 )1Pdt

02, (Dl - 2t,, (z + to.+i )IP dt
< C y t-'I00o,,O (,, -o,-______' )

I + ot-IIA14(1" +  tU1"+1)I" dt

For the las, inequality we have used Lemma 2.1. The estimate (6.10) now follows imme-
diately in light of Lemma 2.2. 1

7. Proof of the main result. Inhomogeneous boundary conditions. We now

prov Thcorem 3.1. Giveli f C 11(Q) for some 1 < p < oc and s > 0 with s- 1/p

nonintegral in the case p $ 2, extend f boundedly to an open disc containing Q and
(,fle u a the solution to Att f which vanishes on the b1 indary of the disk. Then

itE +2 (Q) and lll < C11 fll I( ) In light of Coro'.arv 6.3 and Theorem 6.2,P P +2,(Q2 a d !1,1 ~ )

We mnay define w = r -- Scud 'Id 11 lr )N and thus we have curl u, = -grad u on oQ

and llWll,+2.p5 < C11l111 I 2< Setting C(f) grad u +curl w gives the desired operator.p/

This completes the J)Ioof.

Let us consider the case of inhoinogeneous boundary data. For s > 1/p we set

so g C X.,~,(0DQ) mneans that g = (g1 , g. ) with g,, C '"'(F,) satisfying the
('Iliti, us given by (6.2). For s > 0 we defi' I Vf(Q) to be the space consisting of those

(7.1) (f.g) E I;,(Q) < X ° +1~(OQ)
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tor w ilch

(7.2) Iv,

(7.3) 11( - Va,, ,, ,f) < 'V ifs 2/p,
(Og,,+ l + I, Og, v,_,

091 1+1 Out 'V l
(7.4) ( ivnl - n 0g l i) (z,,) =vi *(n+f(z,,). if. > 2/p.

It is ii)t ifficult to Se, thmt a neccss-ary coi(lition for the existence of U E 2II + )] :

~sattisfying

divU =f in Q.,
(7.5) U = g oni OQ.

is that (f. g) 1 /j"(Q ). The following theoieil slows tl at thi- condition is also slffic'icill

a 1 .d that Cle problem (7.5) admits a bounded right inv( "se which do,,s not depend on ., or

TIIEoHEM 7.1. Let 1 < p < oc. s > 0. If p 7 2 sup ,ose tlat . - 1/p V Z. Then tlcit,

exists a bounded linear map

AC : 1V() - [TV+'1 2

such that 'br any (f, g) E I7 (fQ , the function U := K7( ',g) solves (7.5). The opei-ator V

may 1be cjosen independent of and p.

P.roof. For (f, g) E V (Q), the function v = c'g C [wVj'+(Q)] satisfies V g n 0CE.

Indeed, tl is follows from Theorem 6.1 since g E X°+1 .,(0o). The conditions (7.2)- (74)

* alv, 1)(,ii chosen )recisely to guarantee that

f - divV C 1IVs(Q).

Thercfore lie operator

A(f. g) := C(f - div V) + V = C(.f - div Crg) + ,.rg

has tlhe, (lc.irvd rol)p('rtics. 1
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